PUBLICATIONS
The 3D equine skeletal model based on CT data can be used to characterize equine postures associated with degenerative tissue changes as well as to identify postures that reduce mechanical stress at the sites of tissue injury. When animated into 4D, the model can be used to demonstrate unhealthy and healthy skeletal movements and can be used to develop preventative and rehabilitative individualized therapies for horses with degenerative lamenesses.
Through comparison with the human Achilles complex, this review (1) re-conceptualizes the equine navicular apparatus as an enthesis organ in which mechanical forces are distributed throughout the structures of the organ; (2) describes the relationship between failure of the navicular enthesis organ and lesions of navicular syndrome; (3) considers the therapeutic implications of navicular enthesis organ degeneration as a form of chronic osteoarthritis; and based upon these implications (4) proposes a focus on whole body posture/motion for the development of prehabilitative and rehabilitative therapies similar to those that have already proven effective in humans.
The combination of large mastoid processes and clavicles is unique to humans, but the biomechanical and evolutionary significance of their special configuration is poorly understood. As part of the newly conceptualized shoulder suspension apparatus, the mastoid processes and clavicles are shaped by forces exerted by the musculo-fascial components of the cleidomastoid and clavotrapezius muscles as they suspend the shoulders from the head. Because both skeletal elements develop during infancy in tandem with the attainment of an upright posture, increased manual dexterity, and the capacity for walking, we hypothesized that the same forces would have shaped them as the shoulder suspension apparatus evolved in ancestral humans in tandem with an upright posture, increased manual dexterity, and bipedality with swinging arms.